
 © 2018 kippdata informationstechnologie GmbH 1 Apache Web Server 2.4 – 10 Must-know Configuration Features

Apache Web Server 2.4 –
10 Must-know Configuration Features

Rainer Jung
kippdata informationstechnolgie GmbH

 © 2018 kippdata informationstechnologie GmbH 2 Apache Web Server 2.4 – 10 Must-know Configuration Features

Introduction

 Rainer Jung, kippdata GmbH
 Committer and PMC member for Apache Tomcat,

the Apache httpd server and Apache JMeter
 Apache Software Foundation (ASF) member
 Doing lots of performance analysis and other

troubleshooting
 Providing support for the Apache Web Server,

Apache Tomcat and other web infrastructure

 © 2018 kippdata informationstechnologie GmbH 3 Apache Web Server 2.4 – 10 Must-know Configuration Features

Disclaimer

 Our approach:
 We will show some nice little tricks that are still not well

known
 We will not describe best practices for a basic

configuration
 None of these need 3rd-party modules

 © 2018 kippdata informationstechnologie GmbH 4 Apache Web Server 2.4 – 10 Must-know Configuration Features

Topics

 The list
 “Define” – using variables
 mod_macro – using templates
 Per module log levels
 Improved access log timestamps and more access log fields
 Correlation ID forwarding
 mod_log_debug – Custom log lines
 “<If EXPRESSION>” – conditional configuration
 “LocationMatch” and other *Match: named backreferences
 mod_remoteip: getting the client IP address right
 mod_ssl: “SSLOpenSSLConfCmd”

 © 2018 kippdata informationstechnologie GmbH 5 Apache Web Server 2.4 – 10 Must-know Configuration Features

„Define“ – using variables

 Number 1: “Define” – using global config variables
Define STAGE dev
ProxyPass /app/ https://services-${STAGE}/app/

 “Define” sets variables, “${...}” references them
 You can also use “${}” to reference unix environment

variables
 But those can not be changed via restart or graceful
 Define'd variables can be changed and activated with graceful!

 Example use case: factor out varying names and sizings
for different stages by replacing them with variables and
setting the variables in a separate Include'd file.

 © 2018 kippdata informationstechnologie GmbH 6 Apache Web Server 2.4 – 10 Must-know Configuration Features

„Define“ – using variables

 “UnDefine VAR” – remove variable “VAR”
 “<IfDefine VAR>...</IfDefine>” – Conditional

configuration, active if “VAR” is defined
(independent of the value of “VAR”

 Negation: <IfDefine !VAR>
 You can also define such a variable with the startup

flag “-D VAR”, but you can not give it a value with
“-D”.

 © 2018 kippdata informationstechnologie GmbH 7 Apache Web Server 2.4 – 10 Must-know Configuration Features

„Define“ – using variables

 Example for combining “-D” and “Define”:
 Control running config by including or not including the

flag “-D TEST” on startup
<IfDefine TEST>
 Define servername test.example.com
</IfDefine>
<IfDefine !TEST>
 Define servername www.example.com
 Define SSL
</IfDefine>

http://www.example.com/

 © 2018 kippdata informationstechnologie GmbH 8 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_macro - using templates

 Number 2: mod_macro - using templates
 A macro is a config snippet with parameters
 One defines the macro with a “<Macro>” block:
<Macro VHost $servername $htdocs $logname>
 ServerName $servername
 ServerAdmin webmaster@example.org
 DocumentRoot $htdocs
 ErrorLog logs/error-$logname.log
 CustomLog logs/access-$logname.log
</Macro>

 Here “VHost” is the name of the macro and “$servername”,
“$htdocs” and “$logname” are its parameters

 © 2018 kippdata informationstechnologie GmbH 9 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_macro - using templates

 One can then call the macro with “Use” with
varying parameters multiple times

<VirtualHost _default_:443>
 Use VHost www.example.org htdocs-www www
 ...
</VirtualHost>
<VirtualHost _default_:443>
 Use VHost sales.example.com htdocs-sales sales
 ...
</VirtualHost>

 © 2018 kippdata informationstechnologie GmbH 10 Apache Web Server 2.4 – 10 Must-know Configuration Features

„Define“ versus mod_macro

 “Define” is especially useful if the same value
should be used in various places in the config.
Define once, use everywhere.

 “Define” is useful if you want to keep a list of
parameters of the config in one place like an
Include'd config file (consisting only of “Define”
directives)

 A macro is useful if your configuration contains
complex blocks that repeat with slight parameter
changes

 © 2018 kippdata informationstechnologie GmbH 11 Apache Web Server 2.4 – 10 Must-know Configuration Features

Per module log levels

 Number 3: Per module log levels
 There are fine-grained log levels for the error log:

…, info, debug, trace1, …, trace8
 No we can make one specific module (here:

mod_rewrite) log very verbosely:

LogLevel info rewrite:trace8

 You can narrow down the verbosity to virtual hosts and
even directory context.

 Note that log level changes in directory context get effective
only after a request has been parsed, so that the server
actually knows the URI and eventually directory.

 © 2018 kippdata informationstechnologie GmbH 12 Apache Web Server 2.4 – 10 Must-know Configuration Features

Improved access log timestamps and more access log fields

 Number 4: Improved access log timestamps and
more access log fields

 By default time stamps in access logs have seconds
granularity. This often is no longer appropriate, we need
finer measurements

 The “%t” pattern used to include time stamps in the access
log allows for variations of the form “%{FORMAT}t

 I suggest something like
[%{%d/%b/%Y:%T}t.%{usec_frac}t %{%z}t]

 That is similar to the default timestamp, except it adds
fractional microseconds!

 The other %-patterns are “strftime()” patterns.

 © 2018 kippdata informationstechnologie GmbH 13 Apache Web Server 2.4 – 10 Must-know Configuration Features

Improved access log timestamps and more access log fields

 More on access log timestamps
 When combining an httpd reverse proxy with a Tomcat

back end, using “%t” in access logs for both components:
 httpd logs the timestamp of request start
 Tomcat logs the timestamp of request end

 You can change that in httpd 2.4 (or Tomcat) by using an
explicit “begin:” or “end:” token prefix in the pattern:

[%{end:%d/%b/%Y:%T}t.%{end:usec_frac}t %{end:%z}t]

 © 2018 kippdata informationstechnologie GmbH 14 Apache Web Server 2.4 – 10 Must-know Configuration Features

Improved access log timestamps and more access log fields

 Other useful access log fields
 Not included by default but consider adding them
 “%D”: request duration in microseconds (!)

 Tomcat: %D is millisecods
 “%L”: correlation ID. A unique ID that will also get logged

for any error log line. You can use it to correlate error log
lines with access log lines (without uncertainty).

 Activate mod_unique_id for better %L values
 “%{begin:usec}t %{end:usec}t”: unix microsecond request

start and response end time. Useful for easier calculations.

 © 2018 kippdata informationstechnologie GmbH 15 Apache Web Server 2.4 – 10 Must-know Configuration Features

Improved access log timestamps and more access log fields

 Even more useful access log fields
 “%P:%{tid}P”: Process ID and thread ID
 “%k %X”: Connection keep-alive counter and final

connection state

 © 2018 kippdata informationstechnologie GmbH 16 Apache Web Server 2.4 – 10 Must-know Configuration Features

Correlation ID forwarding

 Number 5: Correlation ID forwarding
 We want to correlate log information between an httpd

reverse proxy and the backends
 Idea: each request should get a unique ID. Log the ID in

the web server and forward it as a custom header to the
next hop (back end).

 How to generate a unique request ID in the web server?
Easy:

 Simply load mod_unique_id.
 And add “%{UNIQUE_ID}e” to the access log format

 © 2018 kippdata informationstechnologie GmbH 17 Apache Web Server 2.4 – 10 Must-know Configuration Features

Correlation ID forwarding

 How to forward the correlation ID?
 We add a custom header using mod_headers:

RequestHeader set “X-Request-ID” “%{UNIQUE_ID}e”

 What to do on the back end?
 Add “%{X-Request-ID}i” to the back end access log format
 Read that header via a servlet filter and pass it to your log

framework, eg. via Log4J(2) MDC to automagically include it in
every log line! That can be done by generic code.

 Side remark: you can also use any string expression
generated by the expression parser as a header value

 © 2018 kippdata informationstechnologie GmbH 18 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_log_debug – Custom log lines

 Number 6: mod_log_debug – Custom log lines
 The module mod_log_debug provides “LogMessage“

LogLevel log_debug:info
...
<Location /honeypot>
 LogMessage “Honeypot accessed”
</Location>

 You can choose the hook (specific part of request
execution in the server) during which the logging should
happen. The special hook name “all” logs in every hook:

LogMessage “Honeypot accessed” hook=all

 © 2018 kippdata informationstechnologie GmbH 19 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_log_debug – Custom log lines

 Using variables with mod_log_debug

LogMessage “Honeypot accessed by %{REMOTE_ADDR}”

 © 2018 kippdata informationstechnologie GmbH 20 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_log_debug – Custom log lines

 Using more complex variable expressions
RewriteCond %{HTTP_COOKIE} “\bJSESSIONID=([^,;]*)”
RewriteRule . - [E:SESSION=%1]
LogMessage “Honeypot accessed, session \
 %{reqenv:SESSION}”

 The last line should be one long line
 We extract the JSESSIONID cookie via mod_rewrite
 mod_rewrite does not rewrite the request but instead sets a

request environment variable named SESSION
 Our log message gets the session id from that variable using

“%{reqenv:SESSION}”. What's this?

 © 2018 kippdata informationstechnologie GmbH 21 Apache Web Server 2.4 – 10 Must-know Configuration Features

Excursion: The unified expression parser

 Excursion: the unified expression parser
 Traditionally we used expressions in several places

having individual and non-consistent implementations:
 RewriteCond
 SetEnvIf
 SSLRequire
 Allow, Deny

 We created a universal expression parser which can be
used in those places and many more

 © 2018 kippdata informationstechnologie GmbH 22 Apache Web Server 2.4 – 10 Must-know Configuration Features

Excursion: The unified expression parser

 Benefits
 We support by far more types of expressions than in the

old implementations
 Every expression features works in all places
 The parser is extensible: you can easily add with a few C

lines your own functions to it and then use them in
existing directives that support the general expression
language

 The parser has a stable API: you can very easily create
expression based directives in your own custom modules

 © 2018 kippdata informationstechnologie GmbH 23 Apache Web Server 2.4 – 10 Must-know Configuration Features

Excursion: The unified expression parser

 The expression parser has two modes:
 Returning a boolean value. Expressions are feasible as

conditions. That's the most common use.
 Returning a string. Typically this is used to dynamically

interpolate that string in configuration values. That's a
more recent feature and not available everywhere. We
might also add more ways how to compose strings with
the expression parser.

 Example for string mode: “%{reqenv:MYVAR}” returns the
value of the request environment variable “MYVAR”

 © 2018 kippdata informationstechnologie GmbH 24 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_log_debug – Custom log lines

 Back to custom logging
 Conditional logging using more complex conditions

LogMessage “Access from test network” hook=all \
 “expr=-R '195.226.29.0/25'”

 The last line should be one long line
 You can add an IP subnet pattern that only matches accesses

from your systems and that way activate logging only being
executed when you access the system

 Remember: “hook=all” will log once for every hook so you can follow
execution more detailed

 © 2018 kippdata informationstechnologie GmbH 25 Apache Web Server 2.4 – 10 Must-know Configuration Features

„<If EXPRESSION>“ – conditional configuration

 Number 7: “<If EXPRESSION>” – conditional
configuration

 Configuration depending on conditions evaluated at
runtime. Typically request based conditions.

 “<If EXPRESSION>...</If>”, “<Else>...</Else>”,
“<ElseIf EXPRESSION>...</ElseIf>
<Location /internal>
 <If "-R '195.226.29.0/25'">
 Options +Indexes
 </If>
 <Else>
 Require all denied
 </Else>
</Location>

 © 2018 kippdata informationstechnologie GmbH 26 Apache Web Server 2.4 – 10 Must-know Configuration Features

„<If EXPRESSION>“ – conditional configuration

 More on boolean expressions in the configuration
 Some of the supported terms:

 word in wordlist
 Regular expression /regexp/ oder /regexp/i
 String matches -ipmatch, -strmatch, -strcmatch, -fnmatch
 Functions

 retrieve headers using req (Request), resp (Response)
 retrieve table entries using reqenv, osenv, notes
 convert string case using tolower, toupper
 encode strings with percent encoding using escape, unescape

 and many more!

 © 2018 kippdata informationstechnologie GmbH 27 Apache Web Server 2.4 – 10 Must-know Configuration Features

„<If EXPRESSION>“ – conditional configuration

 “<If EXPRESSION>” is also nice for debugging
 You can increase the log level for specific requests
<If "-R '195.226.29.0/25'">
 LogLevel trace8
</If>

 Not just IP matches. You can look for a specific user
agent, some other header values, session IDs etc.

 The LogLevel change (and any other configuration inside
“<If>”) will only be effective, after the request has been
read, so is available for evaluation, but of course before
the response gets generated.

 © 2018 kippdata informationstechnologie GmbH 28 Apache Web Server 2.4 – 10 Must-know Configuration Features

„LocationMatch“ and other „*Match“: named backreferences

 Number 8: “LocationMatch” and other “*Match”:
named backreferences

 “<LocationMatch>”, “<DirectoryMatch>” and
“<FilesMatch>” are similar to “<Location>”,
“<Directory>” and “<Files>” but one can use regular
expressions in the argument (location, directory or file
pattern).

 What if you want to use the matching part in the config
block inside “<LocationMatch>” etc., so you want to
use $1, $2, …?

 © 2018 kippdata informationstechnologie GmbH 29 Apache Web Server 2.4 – 10 Must-know Configuration Features

„LocationMatch“ and other „*Match“: named backreferences

 Naming backreferences in “<LocationMatch>”
 Using $1 etc. will not work, but you can give the matching

group real names
<LocationMatch "^/(?<context>[^/]+)">
 require ldap-group \
 cn=%{env:MATCH_CONTEXT},ou=contexts,o=Example
</LocationMatch>

 The naming is done with prefixing the group in the match by
“?<myname>”. The matching groups will be put into the
request environment under the names MATCH_MYNAME, so
always “MATCH_” concatenated with the upper case group
name.

 © 2018 kippdata informationstechnologie GmbH 30 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_remoteip: getting the client IP address right

 Number 9: mod_remoteip: getting the client IP
address right

 If your web server sits behind another reverse proxy, like
eg. a load balancer working in reverse proxy mode, your
client IP is the IP of the reverse proxy in front of you.

 How do you get the original client IP address for use in
the access log and in access control (“Require ip”)?

 © 2018 kippdata informationstechnologie GmbH 31 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_remoteip: getting the client IP address right

 Use mod_remoteip
 It gets the original client IP from a request header
 It add it to internal structures, so that in most cases it

will be used automatically instead of the connection peer
address

 “Require ip”
 “%a” in the access log format

 Caution: per default the log format contains “%h” which does not
react to mod_remoteip. Use “%a”.

 © 2018 kippdata informationstechnologie GmbH 32 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_remoteip: getting the client IP address right

 Which header?
 Header name is configurable

 Typically used: “X-Forwarded-For”
 Example: Apache web server as a reverse proxy automatically adds its

client IP address to this header

 The header can contain a list of IP addresses if there's a
chain of proxies in front. mod_remoteip can handle this.

 © 2018 kippdata informationstechnologie GmbH 33 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_remoteip: getting the client IP address right

 Security implications
 Request headers can easily be set (forged) by the client

itself
 So the proxy in front of you should not forward values

from outside and instead overwrite the header
 Therefore it is important to tell mod_remoteip, that it

should only use the header as the IP address source if the
request comes via a connection from a trusted proxy

 © 2018 kippdata informationstechnologie GmbH 34 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_remoteip: getting the client IP address right

 Remoteip minimal example config:

Not needed, default
RemoteIPHeader X-Forwarded-For
Adjust to your trusted proxy addresses
RemoteIPInternalProxy 192.168.161.33 ::1

 © 2018 kippdata informationstechnologie GmbH 35 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_ssl: „SSLOpenSSLConfCmd“

 Number 10: mod_ssl: “SSLOpenSSLConfCmd”
 mod_ssl already has lots of configuration options. More

or less one option per OpenSSL feature.
 The same problem – needing to implement a new

configuration option whenever OpenSSL gets a new
feature – applies to every software using OpenSSL.

 The OpenSSL project therefore designed a generic
configuration API. Software can send configuration
strings to OpenSSL and OpenSSl parses and interpretes
them. “SSLOpenSSLConfCmd” uses this new API.

 © 2018 kippdata informationstechnologie GmbH 36 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_ssl: „SSLOpenSSLConfCmd“

 OpenSSL supported configuration strings
 For an up-to-date list of supported configuration strings look

at the OpenSSL docs, especially at the section “SUPPORTED
CONFIGURATION FILE COMMANDS” in the following pages
(depending on the OpenSSL version you are using):

 https://www.openssl.org/docs/man1.0.2/ssl/SSL_CONF_cmd.html
 https://www.openssl.org/docs/man1.1.0/ssl/SSL_CONF_cmd.html
 https://www.openssl.org/docs/man1.1.1/man3/SSL_CONF_cmd.html

https://www.openssl.org/docs/man1.0.2/ssl/SSL_CONF_cmd.html
https://www.openssl.org/docs/man1.1.0/ssl/SSL_CONF_cmd.html
https://www.openssl.org/docs/man1.1.1/man3/SSL_CONF_cmd.html

 © 2018 kippdata informationstechnologie GmbH 37 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_ssl: „SSLOpenSSLConfCmd“

 Example “SSLOpenSSLConfCmd”

SSLOpenSSLConfCmd Options \
 -SessionTicket,ServerPreference

 “-SessionTicket”: switch of support for session tickets (client
side TLS session saving and resumption)

 Alternative: “SSLSessionTickets Off”
 “ServerPreference”: Use server preferences not client

preferences when determining cipher suite, signature
algorithm or elliptic curve to use.

 Alternative: “SSLHonorCipherOrder On”

 © 2018 kippdata informationstechnologie GmbH 38 Apache Web Server 2.4 – 10 Must-know Configuration Features

mod_ssl: SSLOpenSSLConfCmd

 More important when using newer OpenSSL versions
 For 1.0.2 specific directives for most features already exist
 For 1.1.1 access to new features is immediate without

waitingfor new specific mod_ssl directives

 © 2018 kippdata informationstechnologie GmbH 39 Apache Web Server 2.4 – 10 Must-know Configuration Features

Bonus: htpasswd and rotatelogs news

 Bonus: look at the docs for “htpasswd” and
“rotatelogs”to find interesting new features

 htpasswd: support for bcrypt password hashing
 rotatelogs:

 Time and size based rotation and also the combination of both
 Optional stable link creation
 Optional post-rotate processing, eg. compression

 © 2018 kippdata informationstechnologie GmbH 40 Apache Web Server 2.4 – 10 Must-know Configuration Features

Questions?

 Hopefully time for questions ...
 … or send them to rainer.jung@kippdata.de

	Titel
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40

